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THIN CURVILINEAR BEAMS OF MINIMUM WEIGHT* 

L. V. PETUKHOV 

The problem of minimizing the weight of thin curvilinear beams whose stateofstress 

is described by the Saint-Venant theory, is considered. The elastic state of the 

beam is analyzed and the influence of the shape of the cross-section on the state 

of stress studied. It is assumed that every point of the beam must satisfy some 
condition of the strength of material. Solutions of concrete problems are given 
for beams of varying configuration. Problemsofminimumweightofbeams andbars des- 
cribed by the equations of the elementary theory of bending, were discussed in /l- 

3/. 

1. Formulation of the problem. Let us consider a curvilinear spatially situated 

beam of length 1. We attach to the beam axis a curvilinear zl,zL. X, -coordinate system (Fig. 

1). Let the unit vector r3 be directed along the tangent to the beam axis, and unit vectors 

r1 and r2 lying in the plane orthogonal to the rQ plane of the cross- 

$ 

& 

section of the beam, be directed along the principal axes of inertia 

? 
of the beam. We shall assume the coordinate axes x1 and zz to be 

.A.-- straight lines, so that the Lam6 coefficients X,-_ X, = 1. We denote 
/ 'i the arc length along the coordinate axis 53 by rtl (dr, 7 X,&r,). 

Let us consider the cross-section of the beam. We shall assume 

Fig.1 that the shape of the cross-section depends on the coordinate r3 in 

such a manner that the linear dimensions of the cross-section are 
proportional to the similarity coefficient0 (r,),with the center of 

similarity coinciding with the center of inertia of the beam. In this case the similarity 
coefficient must satisfy the inequality 

A ,o (1.1) 
The cross-section obtained for 0 = 1 will be called the initial cross-section. Clearly,not 

all forms of the initial cross-section have similar cross>sections for any 0 :. 0. However, 

all convex cross-sections and a majority of the cross-sections which have practical applica- 

tions, have similar cross-sections at any 0. 

Letus denotethedisplacements, angles of rotation, moments, forces,external distributed 

loads and moment vectors by u, cp, M, P, p, m , respectively. Then the equations of equili- 

brium of a curvilinear beam will have the form ( a prime denotes a derivative with respect 

to r3) /4/ 

P'=-p, M'=-m-rPaxP, u'=-~>(q ;A.P, (o'=C.M (1.2) 

Here A and C are second rank tensors depending on the form of the cross-section and the 

elastic constants of the beam material. In a coordinate system associated with the principle 

axes of inertia of the system, the above tensors assume the diagonal form 

where E is Young's modulus, G is shear modulus, s is the area, c is the torsional rigidity 

jr and jz are the principal moments of inertia andi,, &are the shear coefficients of the 

beam's cross-section. The relations (1.3) show that (the zero subscript denotes the values 

referring to the initial cross-section) 

Akh” = 02Ak- 1. 3 Ctik3 = 04Ch-k (k = 1, 2, 3) (1.4 

Using the configuration of the axis as a criterion, we can separate all beams into two 

groups. The first group will contain all open beams. The boundaries of such beams are 

r,=O and r3= 1, and we set the following conditions at these boundaries: 

--an& (0) + b1tui, (0) - g,h_ = 0, ashPfi (I) -/m bzh+ (1) -fib- -- 0 (1.5) 

-clh-Jfh. (0) + &k(~k (0) - fm = O,_ clh-Mk (1) + dakqh. (1) - fak = 0 (k = 1, 2, 3) 

-- 
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where a,,k, b,,k. Cnk, dnk, &k, fnk (n = 1, 2; k = 1, 2, 3) are given coefficients and a,,k' + b,kZ # 0, cnk2 -t 

d,k2 # 0. The Coefficients fnk and g,,k may represent either concentrated forces, or moments 
acting at the beam ends, or given displacements and angles of rotation. The boundary condi- 
tions (1.5) are sufficiently general and embrace a large class of realstructures.The second 

group contains closed beams. In this case there will be no boundary conditions and the 
integration constants can be found from the conditions of periodicity of u, cp, M and P. 

We obtain the stresses within the beam using the Saint-Venant theory /!?I/ 

Here Y is the Poisson's ratio and Xk 7 Xk br 53) 6 = 1, 2, 3) are solutions of the boundary 
value problems 

Ax1 = 0, axI / ar,’ IF = aIx12 + 2va,x,x,, Ax, = 0, 8~~ / ar,’ Ir = 2va,x,x, + aEx2* (1.7) 

A xs = -2, 8x3 ! art’ (p = 0 

where we introduce the following notation: A is the Laplace operator, r is the contour en- 
circling the cross section S, x1’, x2’, x3’ denote a system of curvilinear coordinates attached 
to the contour I' in such a manner that the unit vector r3’ is parallel to the vector rSr rI’ 
is directed along the tangent and rl’ along the normal to the contour I', arand a2 are direct- 
ion cosines of the normal r,', and rr', rz' are the arc lengths along the coordinate lines zr' 
and x2'. 

The stresses (1.6) can be expressed in terms of the stresses in the initial cross-section 
Indeed, let us change the coordinates 51, rz and functions x1, x1, x3 as follows: 

5% = 8zjj0, Xk = @xk”(zl’, 233) (k = 1, 2), X3 = e2x3' (r,", sz") (1.8) 

where the zero superscript denotes, as before, the quantities associated with the initial 
cross-section. Substituting (1.8) into the differential equations and boundary conditions 
(1.7), we obtain the boundary value problems for the quantities accompanied by the super- 
script zero. 

so : 
Let us introduce into our discussion the following functions defined on the set zr', rzOE 

Substituting the right-hand sides of (1.8) into the expressions for the stresses (1.6), we 
obtain the following convenient formulas 

0% = XklPl i 83 + Xh3P3 / 83 + Xk3M3 i 83, 033 = xa14 103 + xa2Mz 183 + xasp3 102, (k=l, 2) 
(1.9) 

As the condition of material strength, we consider the following inequality: 

--I, (Dev u) < ro2 (1.10) 

where Z,(Deva) is the second invariant of the deviator of the stress tensor (I, and z0 is 
the torsional yield point of the material. Substituting the stresses (1.9) into the strength 
of material condition (l.lO), we obtain 

o= mas 
x*0, IPEJ~ 

I(x~$~~ 1 83 + xa2M, 1 83 + xs3p, / ey 1 3 + (@, i 82 + x,~P~ i 82 + x13MS 1 es)% + (1.11) 

(x21~1 / 82 + x22~2 i e* + x&r3 / es)*1 - d < 0 

In addition to the constraints (1.11) which are called, in the optimal control, the zero 
order constraints /6/, a necessity often arises for the constraints 

0 -s h, < e G h, (1.12) 

when justified by design arguments. 
Let us pose the following optimization problem. To find, amongst the piecewise continu- 

ous controls l3(r.J and peicewise smooth functions u (rs) cp kg), M (r3), P (r.4 , satisfying the 
equations (1.21, boundary conditions (1.5) and constraints (1.111, (1.12), such controls and 
functions which would minimize the weight of the beam 

J = s pgs’V dr:, (1.13) 
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Here g is acceleration due to gravity and p is the density of the beam material independent, 

as a rule, of the coordinate r3. 

2. Necessary conditions of optimality. The problem of minimum weight of the 
beam refers to the problem of optimal control with fixed ends, with the zero order constraints 

(1.11) imposed on the phase coordinates, and constraints (1.12) imposed on the control. 

Following /7/, we pass from the inequality-type constraints to the equality-type constraints 

w -I- e,z = 0, -f3 + h, -I- 02" = 0, 0 - h, -/ O,? = 0 (2.1) 

where I$, e2 and O3 are supplementary control functions. 

Let us construct a Hamiltonian function H/8/. To do this we add to the integrand ex- 

pression in (1.13) the right-hand sides of the equations (1.2) scalar multiplied, one after 

the other, by the undefined Lagrange multipliers -v, -9, Q, N, and the left-hand sides of 

the equations (2.1) multiplied by the Lagrange multipliers fll? I%> C'3 

H = pgso82 + v’p +- 11,.(m i r3 x P) + Q.(-r3 x ‘P +A*P) + (2.2) 

N.(c.M) + p1 (0 + e12) i- k (-e + h, + e:) + p3 (0 + h, + 8;) 

Using the results of /8/ we obtain, for the control problem in question, the Euler equations 

(as before, the prime denotes a derivative with respect to r3) 

(2.3) 

Analysis of the above equations shows that the first four Euler equations formally co- 

incide with the equations (1.2), provided thatweperformthe analcgybetween u and v, r$ andlq,M 

and N,Pand Q . Analizingthelast threeEulerequationswe find,thattheyareequivalenttothe 

equations 
p,w = 0, j& (-0 + AI) = 0, ~1~ (0 - h,) = 0 

The Weierstrass-Erdman conditions for the problem of minimization of weight reduce to 

[VI = 0, [$I = 0, IN1 = 0, LQI = 0, [HI = 0, [Fl = F (r, -/ 0) - F (r3 - 0) (2.4) 

Taking into accountthefirstfour conditions of (2.4) we obtain, from [HI = 0 > 

pgso [e]2 + v.[pl + q.[ml + Q.AO.P [I / 8'1 + N.CO.M II / (I41 = 0 (2.5) 

Let us now construct a function obtained by summing the left-hand parts of the boundary 

conditions (1.5) multiplied by the undefined Lagrange multipliers Elk, &k, qIk, nzh respectively. 
Using the results of /El/ we obtain, at the points r3 = 0 and r3 = 1, twenty four conditions 

Qlr (0) = -El&r Q. ((I) = -&~h., Nh- (0) = --11,&h 7 +r (0) = -qucm (2.6) 

Qh- (1) = E&h-r Us (1) = -gakaer, N,c (1) = q&h, +h- (1) = ‘h&h. (k = 1, 2, 3) 

twelve of which are used for determining the Lagrange multipliers r;l,, Ezh-7 rllh., nzir and the re- 

maining twelve represent the boundary conditions for the Euler equations (2.3). Eliminating 

from (2.6) the Lagrange multipliers, we obtain the boundary conditions in a more convenient 

form 

-hkQk (0) + huh. (0) = 0, azkQk (1) t bzh.vk (2) - 0 (2.7) 

-cmNk (0) + &h-Qh. (0) = 0, ~&‘h. (1) + &k$>; (4 = 0 
(k = 1, 2, 3) 

Using the formulation of the present paper, we obtain the necessary Clebsch and 
Weierstrass conditions of weak and strong minimum in the form of the inequalities (2.8) and 

(2.9), respectively 

Lb11 '10, p2 L 0, uL3 '-- 0 (2.8) 

H(M, P, N, Q, 0) 3 H (hl, P, N, Q, (_,) (2.9) 

where e(rJ is the optimal and @(r3) any admissible control. 

3. Optimal beam systems. Let us take, for simplicity, a circle of radius a = lm as 

the initial cross-section. Solving for this cross-section the boundary value problems (1.7) 
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Minimum weight cantilever. The cantilever represents a rectilinear beam, one end 

of which is fixed and the other free. For a rectilinear beam the system of equations (1.2) 

splits into four systems of equations (bending in two planes, tension and torsion). The 

boundary conditions (1.5) for the cantilever simplify to 

U (0) = cp (0) = 0, &i (0 = gk, MI, (1) = ft (k = 1, 2, 3) (3.2) 

Solving the equations (1.2) with boundary conditions (3.2), we find 

(3.3) 

The control 6(ra) is determined by the equation 

0 = 0 (3.4) 

Let us take pk = VQ = 0, jk = 0 (k = 1,2,3), g, = gs= 0, g,= 2.14.10*~ , I = 1 m, 
p = 7.8.103kg,n,3. 

v = U.25,~ = 1.47.10aN/m2 

The optimal control is shown in Fig.2 by a solid line. The weight of the optimal beam and 

the constant cross-section beam satisfying the strength of material condition (1.11) are, 

respectively, J,; 220 N, J, ~384~ (weight payoff ~4304) 

Minimum weight of a beam with a helical axis. We take a beam with a circular 

cross-section, the axis of which represents a helix. One end of the beam is fixed, and the 

other end is acted upon by a force g (Fig.3). Let us put 1 = 1 m. as the length of a single 

turn of the helix, h = 0.1 m. 

7.8.103kg/m3 

as one pitch of th helix, g = 9.8.105N, Tg = 1.47.10aN,m2, Y -= 0.25, p.= 
Solving the equations (1.2)we obtain 

P, = 0, 

], M, = - 2nl gdZ [ 1 - cos 1 2+-r,)]v d = f/1”_ b = d, (zn) 

Fig.2 

Fig.3 Fig.4 

The optimal control 6(1$ can be found from equation (3.4) and is represented in Fig.2 by a 

dashed line. The weight of the optimal beam and the constant cross-section beam satisfying 

the strength of material condition are, respectively, ,J,=289 N, 
zz 400"). 

I,-_ 473 N (weight payoff is 

Minimum weight of a beam with a circular axis. We take a beam of circular 

cross-section, with a circular axis (Fig.4), acted upon by concentrated tensile forces ?,gI. 

Let us put b = 0.1 m, g, = 9.8.103 N, r,, = l.47.10s~/n,2, E = 2.06.10" ~~~~~ v = 0.31,.p= 7.8.103kg/m3. 

Since theproblemof stretching a circular ring has symmetry axes z, =0 and zz=o, we shall 

consider a quarter of the ring r3~ IO, nbl?] with boundary conditions 

u3 (0) = qz (0) = IL9 (1) = T2 (0 = PI (0 = 0. PI (0) = Cl 
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An exact solution of the problem in question cannot be obtained. We have, therefore, 

solved the problem in which the restriction (1.11) was regarded as a multiplier, imposing a 

penalty on the functional (1.13). The optimal beam and the constant cross-section beam 

satisfying the strength of material condition (1.11) are shown in Fig.5 by the solid lines, 

and the distribution of the moment M, by a dashed line. The weights of the optimal and 

the constant cross-section beams are, respectively, J,--,5.98 N, Jnzli.ON (weight payoff ~46~0). 

e-/o3 
Analysing the optimal beams we find that 

all these beams have equal strength irrespect- 

ive of the form of the beam axis. We note that 

a beam is called equistrong if every cross- 
7 section contains a point at which the restric- 

tion (1.1) becomes an equality. The points 

need not be situated at some specified part of 

the cross-section, they may change their posi- 

tion within the cross-section depending on the 

arc length r3.. 

The process of solving the problem could 
‘? 

3i 4fi 'j.cm 
be somewhat simplified if it could be shown 

that the formulation of the problem with the 

Fig.5 

equality-type constraints. 

inequality-type constraints (1.11) is equival- 

ent to the problem with the corresponding, 
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